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Abstract. The computational complexity of obtaining optimal reorderings for performing sparse

Gaussian elimination justifies the heuristic nature of all practical reordering algorithms. The concomitant
lack of analytic results on heuristic orderings requires that any general comparisons between orderings must
be empirical. We report our findings from an extensive investigation of the Markowitz, P" and p5 ordering

heuristics applied to a spectrum of sparse matrices. The ordering heuristics differ in overall effectiveness in

reducing fill, particularly on certain problem classes, and in their ability to provide stable as well as low fill

factorizations. Statistical analyses indicate that certain easily observed, general, structural parameters of the

matrices are predictors for the amount of fill observed. Various estimates of the stability of the" factorizations

were compared for reliability and accuracy. We close with recommendations for use and for further
investigation.
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1. Introduction. It is widely believed that the effectiveness of ordering algorithms
for sparse matrices depends in large part on the origins of the problems. Yet, the
heuristic nature of these algorithms often does not permit analytic results. Realistic
evaluation of heuristic orderings demands the use of a representative set of test
problems. This report contains the results of a comparative study on the effectiveness
of general purpose algorithms for reordering unsymmetric sparse matrices. The study
is empirical and is based upon an expanded version of the Harwell collection of test
matrices [7], [9].

It is common folk knowledge that sparse matrices which occur in practice have
special features that reflect, in unclear fashion, the scientific origins of the problems.
The following quote from [7] indicates this wisdom: "Telling an expert that a matrix
has arisen from circuit theory or structural mechanics immediately gives him a consider-
able feel for its features." While the statement certainly contains a good deal of truth,
it is, like most results on sparse orderings, hardly a theorem. It is also irrelevant to
the inexpert consumer of sparse matrix software, whose desire is to use a general
purpose ordering code to solve the actual problem that has (possibly) arisen in some
discipline unknown to the software designer.

The goals of this study were two-fold:
-To study the effectiveness of orderings across test problems spanning a wide

spectrum of scientific origins;
-To investigate whether any simple measures of problem difficulty can be obtained

at less cost than actually ordering the problem.
The first goal differs from those of previous studies, particularly that of Duff and

Reid [7], in evaluating orderings rather than codes. The selection of data structures
has an undeniable impact on the actual computation and on coding practices, but that
was explicitly not of interest in this study. Our purpose was to investigate the validity
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of the folk wisdom, especially in evaluating how different orderings would perform
when presented with problems not anticipated by the designers of the heuristics.

The data that are the basis of this study, the algorithms and matrices, are discussed
in this introductory section, as are the limitations of this study and the conclusions
that can be drawn from it. The second section of this report is a discussion of the
symbolic, i.e., nonnumeric, measures and properties of the data. The third section
discussessome important numerical properties and behavior. In the concluding sections
we summarize the results and conclusions, and indicate further directions suggested
by this study.

1.1. Algorithms. In contrast to the rich collection of ordering heuristics available
for reordering symmetric matrices, the literature contains few orderings designed for
any class of unsymmetric matrices, and much less to serve in a general purpose way.
Only one algorithm, the Markowitz reordering [23], is commonly accepted as being
general in capability. The p3 and p4 algOlithms by Hellerman and Rarick [17], [18]
are frequently used in linear programming codes, also the origin of the Markowitz
ordering. In related work [14] the authors developed a modification of the second of
the Hellerman-Rarick orderings, which we have denoted as pS. Another ordering was
developed by Lin and Mah [20]-[22] to solve chemical engineering problems. All of
these are based on no special properties other than sparsity, so they could reasonably
be applied to quite general problems. Unfortunately, the only implementation of the
Lin and Mah algorithm known to the authors is part of a proprietary chemical
engineering code and was unavailable to us. Development of a new implementation
wasbeyond the scope of this study, so this ordering was omitted and so were symmetric
orderings.These orderings, applied to the connectivity structure of A + A T,are usually
viewedby their designers as being applicable only to problems that are nearly symmetric
in structure. It has been considered to be ineffective to apply them to problems in
whichthe structure of A + AT is not close to that of A. They were, therefore, omitted
fromthis study as being not general in purpose.

In applying these orderings to sparse matrices, we precede the ordering with a
preordering that places the sparse matrix in a lower block triangular form in which
each diagonal block is irreducible. The factorization of a matrix in this form can be
performed by independently factoring each diagonal block and, in addition, without
causingfill in the blocks in the strict lower triangle [4], [14]. Consequently, the ordering
heuristics and the factorization work can be confined to a series of subproblems of
smallerorder. Fast algorithms have been developed for this task [2], [5], [6], [29]. In
generalthe block reduction results in smaller time and arithmetic requirements, dramati-
callyso if the block form results in diagonal matrices of small order only. There are
counterexamples in which ordering the entire matrix is more effective, but generally
block triangular reduction is an accepted practice, questioned only for problems
expected to be (essentially) irreducible. Indeed, the essential distinction between the
p3and p4algorithms is that the p4algorithm is the p3algorithm preceded by a reduction
to irreducible block triangular form. (Consequently the p3 algorithm, per se, was not
used in this study.) Section 2 contains further discussion of this preordering and of
its effectiveness in reducing the complexity of the reordering work for the problems
in our test set.

The heuristic due to Markowitz has the simplest statement of the three orderings
usedin this study, although it is the most complex to implement. It yields a local
minimizationof the amount of computational work. At each stage in the factorization
rowand column interchanges are performed so that the leading diagonal element of

601



602 ERISMAN, GRIMES, LEWIS, POOLE AND SIMON

the reduced matrix, the next pivot entry, is any element that minimizes the number of
operations required at this step of elimination. The reordering can be also considered
as a series of local decisions to reduce the amount of fill that occurs, because the
minimal operation choice also minimizes a bound on the number of new fill entries.
The computation, however, requires that the sparsity structure of the current reduced
matrix be known; the ordering routine must perform a partial symbolic factorization
as it proceeds. Dynamic data structures capable of representing the structure of the
factored matrix, as opposed to the original matrix, are required.

Arbitrary tie-breaking is a common occurrence in heuristic reorderings. All of the
orderings of interest to this study contain decision steps in which essentially arbitrary
choices are made, as, for example, which to choose among several entries that equally
reduce the bound on fill. In some sense then, our study is a study of particular members
of classes of orderings.

For a Markowitz type of ordering we used the MA28 code developed by Duff at
Harwell [3], [4]. This code has some features that distinguish it from the original
ordering by Markowitz, but it is widely accepted as a general purpose ordering and
as a Markowitz ordering. A particularly valuable feature of the MA28 code is its
attention to numerical stability. The data requirements of the Markowitz ordering are
such that it is relatively easy to perform the numerical factorization directly in conjunc-
tion with the ordering. This makes the numerical values as well as the structure of the
reduced matrix available to the ordering. The numerical values are used by MA28 to
control the stability of the factorization by rejecting the natural Markowitz choice if
it would cause too much immediate growth in the elements of the factors of the matrix,
In such a case an alternative pivot is chosen that minimizes the bound on fill among
all the entries that are acceptable on growth grounds. How much growth is acceptable
is specified by the user through a tolerance setting which controls the compromise
being made between preserving the sparsity of the problem and maintaining the stability
of the factorization.

In the study MA28 was used in a mode as near to pure Markowitz as possible by
setting the pivot tolerance to zero. The Markowitz ordering may still be perturbed for
numerical reasons, but only when the natural Markowitz choice would be accidentally
an exactly zero entry. To evaluate the general effectiveness of MA28 as a numerically
stable algorithm, corresponding additional tests were made using a particular nonzero
value, one tenth, for the growth tolerance.

The p4 ordering has a significantly more complicated description. The clearest
explanation is found in [14]. This heuristic differs from the Markowitz heuristic in
two particularly important ways. First, the heuristic is based on obtaining a particular
form for the matrix, as opposed to locally reducing fill. The desired form is essentially
a lower triangular matrix, in which a few occasional columns known as spikes stick
up above the main diagonal. In such a form fill occurs only in the spike columns. This
may be used to create less complicated data structures for the factors than are used
in MA28. It is also advantageous for updating factorizations when isolated columns
of the matrix are changed, as occurs in linear programming problems [26].

A second significant distinction between the p4 hearistic and the Markowitz
heuristic are the data structure requirements for the ordering. Where the Markowitz
ordering requires access to the filled reduced matrix, the p4 ordering proceeds with a
static representation of the original matrix. The computational complexity of the
ordering is apparently much less than that of Markowitz; an efficient implementation
will be much faster and require less storage than a Markowitz ordering. On the other
hand, the simple data structures do not allow knowledge of the numerical values that
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willarise in the factored matrix. Accidental zero pivots may occur, as may small pivots,
which cause unacceptable growth. Indeed, the heuristic may result in non accidental
structurally zero pivots on the diagonal of the reordered matrix.

The natural way of avoiding such failures of this algorithm requires interchanging
the column in which the unacceptable pivot occurs with some particular spike column,
which is ordered later in the matrix. This does not affect in any way the ordering of
any other columns, so it is usually incorporated in the numerical factorization, which
occursafter the ordering. While this maintains the simplicity of the ordering heuristic,
it does not allow the heuristic to interact with the changes that are made in the resulting
matrix. The result is that fill may increase significantly. Gill et al. [15] and Saunders
[26], [27] indicate that this is often the result for even limited control on element
growth, and their results do not include measures to demonstrate that the resulting
factorizations were acceptable.

The problem of nonaccidental zero pivots in a p4 ordering can also be avoided
by making minor changes in the heuristic. One particular way in which this can be
done is the so-called p5 algorithm, which results from earlier work of the authors. This
algorithm is very similar to the p4 heuristic in its complexity, but the reordered matrix
has more structure than that resulting from either p4 or Markowitz. Advantage of this
structure can be taken to reduce dramatically the storage requirements (effective fill)
for the factors of the matrix. (The explicit fill can be shown to be never less than for
thep4ordering). Details are given in [14] and in § 2. Unfortunately, avoiding structurally
zeropivots does not guarantee numerical stability. The requirements for stability appear
to conflict with the special structure of the factored matrix. Low fill and numerical
stability appear to be in direct conflict with this ordering, as is discussed further in § 3.

Two implementations of a p4 ordering were available to us, one due to Bisschop,
Levyand Meeraus at the World Bank [1] and the other by Murtagh and Saunders at
Stanford [24]. These differ in slight respects of tie-breaking, which we judged after
some experimentation to be insignificant. The World Bank code was more easily
modified to create a p5 code, and so the results herein are for

-Markowitz-the Harwell MA28 code;
-p4-the World Bank p4 code;
-p5-the BCS p5 code based on the World Bank p4 code.

1.2. Evaluation program. The goals of this study depend on measuring effective-
ness of orderings independent of details of implementation. The variability of
implementation was removed by using the same code for the symbolic and numerical
factorization of the sparse matrices. The primary measures of effectiveness of orderings
werejudged to be fill and numerical stability. A program was written to extract these
statistics from comparable factorizations based on the Markowitz, p4 and p5 orderings.
In addition, the program computed a number of statistics on the distribution of
nonzeroes in the original matrix and on the effect of block triangularization. These
included a series of measures of regularity and symmetry in the original matrix, as
discussed further in § 2.

To isolate ordering properties from details of factorization implementation, the
orderings were extracted from the respective codes as permutation vectors. The actual
factorizations were performed then by a common code, the so-called refactor code,
MA28B,from the Harwell package. In the case of the Markowitz orderings, with and
withoutpivoting, we were able to use the package directly. We first factored the matrices
with MA28A, and then refactored identically the same matrices with MA28B. For the
othertwo orderings the permutation vectors were input to a symbolic factorization



604 ERISMAN, GRIMES, LEWIS, POOLE AND SIMON

subroutine extracted from the MA28A code. The fill is, of course, independent of the
factorization implementation. Storage requirements and numerical details do depend
on implementation; ours are at least comparable because the implementation is the
same for all orderings.

The common factorization module allowed us to compare the effects of the various
orderings in general, but it also imposed some limitations on the study. The most
important is that no provision was made to investigate the effect of pivoting on the p4
heuristic. Part of the design of the study was to investigate the effectiveness of p4and
p5 as pure preordering schemes. The program design sufficed for this investigation,
but makes further investigation of p4more difficult. In addition, whenever a structurally
zero pivot resulted from the p4heuristic, no symbolic factorization could be performed.
Although the frequency of this failure was one statistic to be explored in this study,
it occurred so frequently as to reduce the overall value of the statistics on the other
orderings. The design also affected the evaluation of the pS heuristic, since it provided
an explicit factorization, which did not use the highly structured matrix form. No
meaningful operation counts on the corresponding implicit factorization were obtained,
although fill statistics were. The common factorization routine also prohibited using
dense code, perhaps with pivoting, for the dense diagonal blocks produced by p5.This
lack of pivoting may have contributed to some of the numerical failings of the pi
ordering.

1.3. Matrices. Fifty-eight unsymmetric matrices of various orders were used to
test the orderings. Many of these were collected by Duff and Reid [7]. The others were
collected by either Duff or the authors, to supplement the coverage of the earlier
collection. For purposes of description and of analysis in this study, the fifty-eight
problems were classified into six groups. These were

-Chemical Engineering Plant models (sixteen matrices, of order from 59 to 2021;
eleven from Prof. A. Westerberg at the University of Pittsburgh; five matrices from
Imperial College);

-Linear Programming Bases (sixteen matrices, matrices 12 to 27 in [7], supplied
by Michael Saunders);

-Partial Differential Equation models on grids (seven problems, of order 80 to
3564; three from Dr. P. Saylor at the University of Illinois; three 3-D steam models
of petroleum reservoirs; one from J. P. Whelan at Philips, Ltd.);

-Simulation matrices with poor numerical behaviors (eleven matrices of order
115 to 1107; four are from atmospheric pollution studies, matrices 33-36 of [7]; seven
are computer science simulations from Francois Cachard, Grenoble);

-Miscellaneous (six matrices of order 32 to 199; matrices 4 to 8 and 11from [7]);
-Optimal power flow problems (two matrices of order 4929 from Rob Burchett,

General Electric Company).
Further details on these matrices, including order and initial nonzero density

figures, can be found in Table 1.1.
It is clear that these problems cannot stand, in any democratic or statistical sense,

as representatives of the universe of unsymmetric sparse matrices. Readers who find
this collection unrepresentative of their interests are urged to help correct the situation
by contributing to the ongoing effort by Duff and the authors to provide better bases
for such studies as this one [9]. This collection does, however, span a wide enough
spectrum of problem types to illustrate rather wide differences in behavior among the
various orderings across the various classes of problems. The limitations of this test
set for testing the dependence of problem complexity on its origin are illustrated by

1) Chemical Engit
from Prof. A. V

Cavett problem
Rigorous flash unit
Evaporator/ conden
Redlich-Krong Eql
Multiply-feed colm
Staged column with

.Plash unit with rec)
Staged column witt
Staged column witt
Staged column witt
Staged column witt

from Imperial (
Cavett's process
Ethylene plant
Heat exchange net\
Hydrocarbon separ
Nitric acid plant

2) Linear Progran
from Michael ~

Stair (after 0 itera
(after 200 itc
(after 400 itc

SheH (after 0 iter;
(after 200 it
(after 400 it
(after 600 it
(after 0 iter:
(after 200 it
(after 400 it
(after 600 it
(after 800 it
(after 1000
(after 1200
(after 1400
(after 1600

BP

3) Simulation M!
from Francois

Simulation studies
Two of the m!
differ in their

from A. R. Cu
Matrices of identic

conditioning,
involving chel
from the FAC



ON

rse, independent of the
rical details do depend
implementation is the

he effects of the various
n the study. The most
;t of pivoting on the p4
effectiveness of p4 and
for this investigation,

whenever a structurally
emcould be performed.
explored in this study,
statistics on the other

ristic, since it provided
ured matrix form. No
rization were obtained,
~also prohibited using
:s produced by p5. This
rical failings of the p5

LSorders were used to
id [7]. The others were
:overage of the earlier
s study, the fifty-eight

.order from 59 to 2021;
gh; five matrices from

2 to 27 in [7], supplied

obiems, of order 80 to
Tee 3-D steam models
.);
~ven matrices of order
ces 33-36 of [7]; seven
noble);
~to 8 and 11 from [7]);
29 from Rob Burchett,

nitial nonzero density

ltic or statistical sense,
ces. Readers who find
lp correct the situation
.0 provide better bases
., span a wide enough
in behavior among the
limitations of this test

rigin are illustrated by

ORDERINGS FOR UNSYMMETRIC SPARSE MATRICES

TABLE 1.1

Test matrices.

Origin

I) Chemical Engineering Plant Models
from Prof. A. Westerberg, University of Pittsburgh

Cavett problem

Rigorous flash unit
Evaporator/ condenser/ compressor
Redlich-Krong Equations of State

Multiply-feed column

Staged column with 8 stages
Flash unit with recycling

Staged column with 16 stages

Staged column with 7 stages

Staged column with 11 stages

Staged column with 15 stages
from Imperial College

Cavett's process

Ethylene plant

Heat exchange network
Hydrocarbon separation

Nitric acid plant

2) Linear Programming Bases
from Michael Saunders, Stanford University

Stair (after 0 iterations in simplex method)
(after 200 iterations)
(after 400 iterations)

Shell (after 0 iterations)

(after 200 iterations)

(after 400 iterations)
(after 600 iterations)

BP (after 0 iterations)

(after 200 iterations)

(after 400 iterations)
(after 600 iterations)

(after 800 iterations)
(after 1000 iterations)

(after 1200 iterations)

(after 1400 iterations)

(after 1600 iterations)

3) Simulation Matrices (with poor numerical behavior)
from Francois Cachard, Grenoble

"Simulation studies in computer science.
Two of the matrices have identical structure, but
differ in their numerical values.

from A. R. Curtis, Harwell
Matrices of identical structure and different

conditioning, from atmospheric pollution studies
involving chemical kinetics and 20 transport,

from the FACSIMILE stiff ODE package.

Order No. of nonzeros

605

67 294
132 414
156 371
167 507
381 2157
479 1910
497 1727
655 2854
989 3537

1105 5445
2021 7353

59 312
137 411
207 572
225 1308
425 1339

663 1687
663 1726
663 1712
363 2454
363 3068
363 3157
363 3279
822 3276
822 3807
822 4028
822 4172
822 4534
822 4661
822 4726
822 4790
822 4841

115 421
185 1005
216 876
216 876
343 1435
512 2192

1107 5664

541 4285
541 4285
541 4285
541 4285
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TABLE 1.1 (continued)
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Origin

4) Partial Differential Equations on Grids
from Paul Saylor, Univ. of Illinois

14 by 17 2D grid

10 by 10 by 10 3D grid
33 by 6 by 18 3D grid

collected by Roger G. Grimes, from thermodynamic
simulations of oil reservoirs

4 by 4 by 5 grid, 3 degrees of freedom
5 by 5 by 6 grid, 4 degrees of freedom

20 point 1D grid, 4 degrees of freedom per element
J. P. Whelan, Philips Ltd.

5) Miscellaneous
Matrix advertising 1971 IBM sparse matrix conference
Biochemical ODE Jacobian (A. R. Curtis)

Jacobian from emitter-follower circuit (R. Willoughby)

Statistical application (M. Gentleman)
Jacobian from laser ODE system (A. R. Curtis)

Stress analysis matrix (R. Willoughby)

6) Optimal Power Flow
from R. Burchett, General Electric

Western utility systembasis 0

Western utility systembasis 1

Order No. of nonzeros

the fact that we originally broke the "chemical engineering" matrices into two classes,
because of their different effects on two of the ordering algorithms. The behavior on
the third heuristic was quite similar in both groups, an argument that they should not
be regarded separately. Similarly the miscellaneous group includes three small
Jacobians from ordinary differential equations, whose numerical properties differ
greatly from the larger set of simulation problems. The optimal power flow problems
were obtained on recommendation of Michael Saunders only after the formal part of
the study had been completed. The very distinct behavior of one of the ordering
heuristics on these matrices warranted their belated inclusion in this paper. Thus they
are listed as a separate group and are not included in our statistical analysis in §2.

As a test set these matrices do provide a range of problems to test the capabilities!,
of the orderings. As will be shown in the following sections, they suffice to show that
the "general purpose" sparse matrix ordering heuristics do differ in their robustness.
Our goal of providing relative evaluation of the orderings can be met with these
problems; they provide only a direction towards our goal of providing means to
anticipate the expert's analysis of problems.

1.4. Limitations. In many ways any study of this sort must be incomplete and
limited, and this study is no exception. The size of the test set is inadequate to draw
deep conclusions. For example, we have only two sources of chemical engineering
problems, and a very small number of problems in other significant disciplines. This
is particularly unfortunate in limiting the value of statistical analyses of certain density
properties of the matrices. These analyses indicate differences among the problem
classes that correspond to differences in ordering behavior. But they cannot be deemed
to be significant; instead, they are only interesting and provocative. They are discussed
in more detail in the following sections.
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Our selection of algorithms is also limited. We have omitted the Lin and Mah
algorithm because of the difficulty in incorporating it. There may be other algorithms
in other disciplines, which are effective, but unknown to the authors. Several reasons
ledus to omit a post-processing phase in the factorization to stabilize numerically the
p4ordering. One was our desire to use a common factorization module for all orderings
to ensure that the results were comparable. Our initial testing indicated that the P"
orderingwas less effective in general than Markowitz; since the required pivoting can
be expected to increase the fill we felt the results would not change any conclusions.
Thisis reinforced by the results from [15], [26], [27], which indicate that the fill in P"
orderings is very sensitive to the number of column intercha,nges. However, these
results are not general; the arguments that fill will increase are substantial, but not
proofs.As the results stand, our P" results are at least parallel to those from p5, which
we do not yet know how to stabilize efficiently.

A final limitation on this work is its emphasis on generality. As such it represents
a bias against the importance of nearly structurally symmetric problems. Interesting
problems not addressed in this study because of this bias are discussed in § 4.

2. Symbolic properties. Among the purposes of this study were the investigations
of several purely symbolic aspects of general unsymmetric sparse matrix reorderings.
These included

-Determining if any or all of the ordering algorithms are generally successful in
obtaining low fill and low work factorizations;

-Determining if there are simple statistical measures of matrix properties that
can predict how well specific matrices will be reordered.

Each of these leads to a series of further questions to be answered, which are
addressed in this section. The discussion of storage and work reduction is addressed
first,followed by the suggestive work on predicting which problems will be difficult.

2.1. Symbolic (preordering) effectiveness of ordering heuristics. A sparse factori-
zation, one with low fill and low operation counts, is a paramount goal of these
reorderingheuristics. Several factors in addition to the heuristics contribute to achieving
this goal and to our being able to measure the results. One of these is the effectiveness
of the block triangularization preordering. Failures of the evaluation code are another.
The evaluation program was not designed to extend a symbolic factorization beyond
a structurally zero diagonal element, if such occurred with the P" ordering. Further,
the MA28 underpinnings of the evaluation code are not capable of adjusting space
amongthe three required and separate workspaces when the space in just one of the
workspaceswas exhausted. Several of the largest (and most expensive) evaluation runs
failedwhen one ofthe MA28 workspaces was inadequate. Unfortunately, our resources
werealso inadequate to allow repeated runs to obtain a proper distribution of space.
For these reasons, analyses of all of the matrices were not possible.

Block triangularization. All of the ordering heuristics in this study were preceded
by a preordering phase in which a permutation to the finest block lower triangular
formof the matrix was found. An implementation of Tarjan's algorithm in the World
BankP" code was used for this reduction in conjunction with the P" and p5 heuristics.
Theseparate option in MA28, also Tarjan's algorithm, was used when the Markowitz
heuristicwas applied. The uniqueness of the reduction up to permutations within the
blocks (see [2]) guarantees that the results of the two different implementations are
comparable. In both cases, contiguous diagonal blocks of order one were coalesced
into larger, triangular, blocks.

Tables 2.1 and 2.2 demonstrate the effect of block triangularization on our test
matrices.The first table shows the average number of equations, average number of
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TABLE 2.2

Significance of block triangularization for the classes of test matrices.

* Includes 5 lower triangular matrices.

diagonal and nontriangular diagonal blocks, the average size of the nontriangular
blocks, and the average percentage of columns in nontriangular diagonal blocks. These
numbers are presented by problem class as well as the overall numbers, which highlights
a clear, and understandable difference between the classes of problems. The partial
differential equation matrices arise from grid discretizations, which are irreducible
unless there are inactive cells or internal boundary conditions. The simulation and
optimal power flow problems are representative of models of closed loop systems, but
not of other classes of simulations. The problems from the other disciplines show large
reductions in the order of the matrices that actually must be factored. Nothing in our
results argues against the conventional wisdom that this preordering should be per-
formed, unless there are reasons to believe thaHhe problem is irreducible. Summary
figures, by origin, are given in Table 2.2, which shows the distribution of matrices, for
which the block triangularization significantly reduced the effective order of the
problem.

Fill characteristics. Statistics on the factors of the matrices were obtained from
the common symbolic factorization routine adapted from MA28A. The statistic denoted
by "explicit fill" is the increase in the number of nonzeros stored to represent the
factors Land U over the number of nonzeros in the original matrix A. Since all of
the matrices were partitioned into a block lower triangular form, the explicit fill is
exactly the collective fill in the nontriangular diagonal blocks.

Within the block lower triangular form each diagonal block acquires a structure
from the ordering heuristic. The Markowitz ordering is generally unstructured, with

-- -- ----------
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TABLE 2.1

Block triangularization statistics for the classes of test matrices.

Ave. percent
Ave. no. Ave. no. of columns Ave. size

No. of Average diagonal nontrivial in nontrivial of nontrivial

Problem class matrices order blocks diag. blks. diag. blks. blocks

Chemical engineering 16 506.4 6.9 3.3 62.1 122.5

Linear programming 16 677.4 21.8 10.50 29.4 19.0
Simulations H 441.6 1.4 1.00 99.9 441.3

POE grids 7 959.0 1.7 1.29 93.4 694.8
Miscellaneous 6 97.5 2.2 1.33 96.3 69.4

Optimal power flow 2 4929.0 2.5 1.00 92.6 4565.5

Overall 58 706.1 8.7 4.33 68.6 235.8

Matrices with Matrices with Matrices with
no insignificant significant

Problem class reducibility reducibility reducibility

Chemical engineering 0 2 14

Linear programming 0 0 16*
Simulations 7 4 0
POE grids 5 0 2
Miscellaneous 3 2 1

Optimal power flow 0 2 0

Overall 15 10 33
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someincreases in density towards the lower right corner of the factors. The p4heuristic
confinesthe fill to the spike columns, which can be used to simplify the factorization
orauxiliary computations in some contexts. Use of this may change the data structures,
butdoes not change the fill statistics. The diagonal blocks resulting from the p5ordering
havea very explicit structure; they are block bordered lower triangular matrices. This
structure allows us to use implicit block factorization techniques, in which the only
filloccurs in the final diagonal subblock of each (outer) diagonal block. This is discussed
in detail in [14]. The actual factorization implemented in our evaluation program used
the standard explicit approach, which gave us explicit fill statistics for this algorithm.
The special character of the implicit factorization and statistics extracted on the
partitioning obtained by the pS code allowed us to compute the fill that would have
been required by an implicit factorization. We refer to this statistic as "implicit fill."
Unfortunately, storage requirements and operation counts for this alternate factori-
zation were not available.

The Markowitz ordering was used in two modes, one as pure a Markowitz ordering
ascan be obtained from MA28, the other as a hybrid ordering combining the Markowitz
heuristic with limited pivoting for numerical stability. Although the discussion of
numericalproperties is the subject of the next section, the fill statistics for the stabilized
version of the Markowitz heuristic are presented here for comparison.

Table 2.3 gives the average of actual fill of the various orderings with respect to
the various problem classes. Table 2.4 gives the average percentage of fill relative to
the original number of nonzero entries for the same problems.
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TABLE 2.3
Average of actual fill for the classes of test matrices.

Explicit fill Implicit
No. of MA28 MA28 fill

Problem class matrices (.0) (.1) p" p5 p5

Chemical engineering 10 126.2 142.4 244.1 262.7 63.5

Linear programming 6 17.0 17.7 23.2 23.8 3.2
Simulations 4 2227.5 2276.5 2099.0 3140.8 485.3
PDE grids 4 12866.5 9935.0 10356.0 10818.5 1440.5
Miscellaneous 6 170.0 186.2 328.0 416.0 53.3

Optimal power flow 2 18518.0 18561.0 - 218466.0 29495.5

Overall 30 2092.0 1716.4 1812.3 2036.8 289.2

TABLE 2.4

Average percentage of relativefill for the classes of test matrices.

Explicit fill Implicit
No. of MA28 MA28 filJ

Problem class matrices (.0) (.1) p" p5 p5

HI

Chemicalengineering 10 22.1 24.5 35.9 41.5 11.4 Iiiii,
Linearprogramming 6 .5 .5 .6 .6 .1 !I
Simulations 4 265.6 268.3 259.7 380.6 59.3

II

PDE grids 4 182.5 157.0 176.0 184.9 23.7
.

Miscellaneous 6 37.3 41.0 68.0 88.0 14.8
Optimalpower flow 2 55.9 56.0 - 659.1 89.0 I
Overall 30 74.6 73.2 83.8 106.9 17.9 !
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These statistics were restricted to the subset of problems where both the ordering
and the symbolic factorization were computed. Five of the test problems were excluded
because the storage demands for the Markowitz code were excessive, six failed for the
same reason for the p4 heuristic, and the same failure occurred seven times for the p5
code. The most frequent case of failure in the symbolic factorization was due to the
p4 ordering, which produced structurally zero diagonal entries for twenty-two of the
problems. This is itself a surprising result. Table 2.5 contains the distribution of these
p4 failures by problem origin. Overall these failures reduced the set of test matrices
for which comparable results were obtained from the total of fifty-eight to thirty
matrices.

TABLE 2.5

Distribution of p4 failures for the classes of test matrices.

Because of their unusual fill statistics the results for the optimal power flow
problems are listed separately in Tables 2.4 and 2.5. Since p4 failed for these problems,
the results for these problems are not included in the overall figures.

The following general observations can be made on the data in the above tables
on fill statistics. They are

-The cost in increased fill of incorporating numerical safeguards in the Markowitz
heuristic is slight. The fill for MA28 with a nonzero pivot tolerance is never much
more than the fill for the pure Markowitz heuristic; on average it is actually less.

-The explicit fill for p4, even for the problem classes where p4 is commonly used,
is almost always greater than Markowitz with pivoting.

-The explicit fill for p5 is always worst.
-The implicit fill for p5 is always less, sometimes significantly so, than the explicit

fill of all the other orderings, except for the optimal power flow problems.
-The problem classes with the largest amount of fill are the PDE problems, the

simulation problems, and the optimal power flow problems. These are also the classes
for which the block triangularization was least effective.

Overall, both the Markowitz and the implicit p5 heuristics perform well across a
spectrum of problems. The p4 heuristic is not much worse in its performance when it
works, but it frequently fails as a strict preordering heuristic because of structural zero
pivots. The implicit fill results indicate that further research on the p5 algorithm may
prove fruitful, although the large amount of implicit fill for the optimal power flow
problems indicates that p5 may be far less a general purpose reordering than originally
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Chemical engineering 0 6 4 1 5
Linear programming 0 10 0 0 6
Simulations 5 2 0 2 2
PDE grids 1 2 3 1 0
Miscellaneous 0 0 0 2 4
Optimal poer flow 0 2 0 0 0

Overall 6 22 7 6 17

* As defined in § 3 as failures.
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expected. However, as is discussed in § 3, a numerically robust version of the pS
algorithm does not yet exist. By contrast, the Markowitz heuristic, constrained for
stability,functions well in general.

The last observation is that the PDE, simulation, and optimal power flow problems
are the hardest of these test problems. It was expected that the PDE problems would
have large fill as they arise from well connected grid discretizations, which yield
irreduciblematrices. Similarly the classes of simulation problems and of optimal power
flowproblems show insignificant irreducibility (see Table 2.2) and the comparatively
largeamount of fill came as no surprise. What was surprising was the fact that both
problem classes also exhibited poor stability (see Table 3.2). That these two factors
were correlated was unexpected. Although this is too small a sample to draw con-
clusions,this correlation should be investigated further.

There are other important statistics on the performance of the ordering heuristics,
inparticular, factorization storage requirements and operation counts. These statistics
werenot available for the implicit factorization for the pSheuristic. They are correlated
withthe fill statistics for the explicit factorization, since we used the same data structures
and factorization routines throughout. For these reasons, we confined our attention to
performance in terms of fill.

2.2. Statistical predictors for fill. Sparse matrix ordering heuristics are not uni-
versallyeffective. The relative performance between heuristics usually depends on the
type of problem being reordered. Certain heuristics are known to be best for certain
problem classes, and not best for others. The algorithms and test cases in this study
showthis behavior only to a limited degree; the more extensive set of orderings for
symmetric matrices illustrates this point more. One of our goals, however, was to
investigatethe extent to which problem origin affected the outcome of our unsymmetric
ordering heuristics and to search for predictors for the fill that occurs. Although our
ordering heuristics fail to show spectacular relative differences, our classes of test
matricesdo. The PDE matrices and the simulation matrices are clearly more difficult
to reorder well than are the other classes. Can this be predicted from observable
properties of the original matrix?

We measured a number of variables that may indicate properties of the test
matrices. For simple density considerations we computed and saved the number of
nonzeros in the original matrix, and also the number in the lower and upper triangles
of the original matrix, respectively. We attempted to measure the regularity of the
distribution of nonzeros by computing the minimum, the maximum and the standard
deviation of the nonzeros by row and by column respectively. Several measures of
matrix structural symmetry were developed that indicate how close a matrix is to
structural symmetry. The measure used in the analyses in the section is the percentage
ofentries in the matrix for which the corresponding entry in the transpose of the matrix
is also nonzero. Statistics were kept on the number, size and average size of nontrivial
diagonal blocks found by the block triangularization.

These measures of density, regularity and symmetry were compared by class with
the performance of the ordering heuristics. The two classes with the highest relative
fillcontrasted with the other classes, according to these measures. The class of PDE
matrices,for example, has the highest average symmetry ratings, has high initial density,
and is more regular than the other classes. The simulation matrices on the other end
aremuch less regular. Their density, as measured by the average of nonzeros by row
(column), is typical for the test set, but the nonzeros are arranged irregularly. They
havehigh maximum column countsand a high standard deviation of column counts.

.!iii.
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By contrast, the linear programming matrices have high maximum and standard
deviation of row counts, with similar density.

Table 2.6 contains the measures for density, regularity and symmetry. On the basis
of these tables, the POE problems stand out for the reasons suggested above. The LP
and simulation problems stand out for their irregularity, and there are few other obvious
differences. The major difference between the LP and the simulation problems would
appear to be the degree to which they split into smaller irreducible problems. We might
have left this topic with the conclusion that this more costly measure represents the
most significant difference between the problem classes. Instead, we proceeded with
further statistical analyses.

We performed a series of regression analyses to determine how well the measures
discussed above predict fill and relative fill.We used the widely available SPSS statistical
package [25] to compute step-wise regressions of the fill statistics for each ordering
against the symmetry rating, the standard deviations of column and of row counts
(measures of regularity), the number of diagonal blocks produced in the block
triangularization, and the original number of nonzeros. The relative fill statistics were
regressed against the order of the matrix, the symmetry, regularity and reducibility
measures, and the average number of original entries per row (column).

Table 2.7 contains a summary of these analyses. Only the variables that were
significant in the regression equations are listed. It comes as no surprise that the original
number of nonzeros is significant in estimating the (additional) fill. It is surprising
that the symmetry ratings and the regularity measures are often significant, particularly
in predicting relative fill. The results of these regressions indicate that the ordering
heuristics are more effective for "general" problems, which are far from symmetric
and which are irregular, than they are on problems with more structure. This conclusion
is not new, but the fact that these structural measures have predictive power for the
conclusion is.

It would be inappropriate, if not foolhardy, to claim statistical significance for
these results. The usual normality assumptions would be rather difficult to justify for
our small test collection. In addition, a linear model, as is assumed by these regressions,
is unlikely. Only very special sparse matrices are known to have only a linear depen-
dence on such parameters as order. Most matrices show a faster, nonlinear, growth.
On the other hand, these results do suggest that further analysis may confirm what is
now anecdotal: that general orderings for unsymmetric matrices perform poorly on
symmetric matrices and matrices with a regular structure.
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TABLE 2.6

Average density, symmetry and regularity measures for the classes of test matrices.

Average Nonzeros per row Nonzeros per column Overall

nonzeros per standard standard symmetry
Problem class row/column maximum deviation maximum deviation rating

Chemical engineering 3.84 11.81 2.41 22.88 3.51 0.05

Linear programming 5.49 256.38 11.83 20.50 4.64 0.01
Simulations 5.68 7.73 1.28 200.36 8.94 0.46

PDE grids 10.14 13.71 1.96 13.71 1.89 0.99
Miscellaneous 5.57 30.17 4.30 32.33 5.17 0.54

Optimal power flow 6.70 35.50 3.00 28.00 3.40 0.20

Overall 5.69 81.45 4.95 55.93 5.57 0.27
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per column Overall
standard symmetry
deviation rating
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5.17 0.54
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3. Numericalproperties. Thebasicorderingheuristics,Markowitz,p4and p5,were
all originally proposed as preorderings, that is, methods for reordering sparse matrices
based only on their nonzero structures, but not on their numerical values. Unsymmetric
sparse matrices cannot, in general, be factored accurately and stably without some
pivoting based on the numerical entries. This study included an investigation of several
questions that address the value of these heuristics as preorderings, and as bases for
stable algorithms. Some of these questions were

-Do the problems differ in their numerical behavior because of their differing
origins? Are there classes of problems for which preordering the matrices is sufficient?

-What are the costs of providing modified ordering heuristics that are stable?
-How reliable are a posteriori error bounds on the error in the factorization?

3.1. Numericalstabilitywithoutpivoting.Threedifferentoutcomesmayresultfrom
the numerical factorization of a preordered sparse matrix: a sufficiently accurate
factorization may be found, a factorization that is inaccurate may be computed, or the
factorization may break down because an exactly zero pivot may be encountered. The
last case is usually thought of as unlikely in numerical analysis, but it is, in fact,
encountered frequently in this particular area. We shall first investigate how frequently
the factorization simply cannot be computed.

Exact zero pivots result from the interaction of small numbers of equationswith
closely related entries from approximate models. For example, one test matrix caused
the p5 factorization to fail because the heuristic had produced a two by two diagonal
block, all of whose entries were the square root of two to machine precision. The
numerical factorization of this matrix must conclude that this submatrix has rank one.
The Markowitz strategy and the p4 heuristic can fail in the same way. The p4 heuristic,
as discussed earlier, can also fail by producing a structurally zero diagonal element.

The comparison of the preordering stabilityproperties is complicatedby the fact
that the MA28 implementation of the Markowitz strategy cannot break down in this
fashion. Since the code computes the numerical factorization during the ordering
process, it can detect an exactly zero diagonal element. When this occurs, the Markowitz
ordering is perturbed; the pivot chosen is some truly nonzero entry with the best
Markowitz count obtainable in these circumstances. In this sense, MA28 does not
provide a pure Markowitz ordering. By contrast, the numerical factorization for p4
and p5 will break down if an exactly zero pivot is encountered.

Table 3.1 provides a partial answer to the value of these heuristics as preorderings.
The number of successful symbolic and numerical factorizations obtained for each
ordering are listed. The MA28 code cannot fail to provide some numerical factorization
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* These numbers include 5 lower triangular matrices on which all algorithms were successful.

TABLE 3.1

Success of symbolic and numericalfactorization for the classes of test matrices.

No. of p4 p5
Problem class matrices MA28 Symbolic Numeric Symbolic Numeric

Chemical engineering 16 16 10 6 15 8

Linear programming* 16 16 6 6 16 12

Simulations 11 9 4 4 6 6

PDE grids 7 4 4 1 6 1
Miscellaneous 6 6 6 6 6 6

Opt. power flow 2 2 0 0 2 0

Overall 58 53 30 23 51 33
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ifit has space for the symbolic factorization, so only a single column is listed for this
heuristic.These operations are listed separately for the p4and p5heuristics. As discussed

-in §2, the symbolic factorization for p4 can fail for two reasons, for lack of space or
becauseof structurally zero diagonal elements. The difference between the failures for
thesymbolic and numerical factorizations of these two algorithms demonstrate how
frequently exact zero diagonal elements are encountered. AIl told, the p4 heuristic
produced twenty-two structurally zero diagonal entries and seven "accidental," but
exact,zero entries; the p5heuristic produced such accidental zero entries eighteen times.

It is certainly naive to assume that non breakdown of the numerical factorization
is,in fact, success. The results in Table 3.1 simply indicate that these preorderings are
not robust in the weakest sense. Table 3.1 does not measure numerical stability. For
example,the norm of the error, liBII= IIA - LUll, in the LU decomposition relative
to A was of the order of 1030for the only PDE problem "successfully" factored with
thep4 ordering. In order to obtain a better picture on the quality of performance of
thealgorithms, we used this relative measure of the error to rate the stability as follows:

IIBII/IIAII~ 10-8 good stability,

10-8< liB 11/11All ~ 10-4 fair stability,

10-4< liB 11111All ~ 1 poor stability,
IIBII/IIAII> 1 failure.

Tables3.2 through 3.4 summarize the stability results, using the qualitative descriptors
above.The three tables provide a comparison across algorithms.

The numbers in these tables allow several conclusions about the relative perform-
anceof the algorithms with regards to stability. The tables suggest that the Markowitz

TABLE 3.2

Stability rating of MA28 with 0.0 pivoting threshold for the classes of test matrices.
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6 15 8
6 16 12
4 6 6
1 6 1
6 6 6
0 2 0

!3 51 33

No. of No
Problem class matrices factors Fail Poor Fair Good

Chemicalengineering 16 0 0 2 1 13
Linearprogramming 16 0 1 2 1 12
Simulations 11 2 8 0 1 0
PDEgrids 7 3 3 0 0 1
Miscellaneous 6 0 0 1 1 4
Opt. power flow 2 1 1 0 0 0

Overall 58 6 13 5 4 30

TABLE 3.3

Stability rating of J>"algorithm for the classes of test matrices.

No. of No
Problem class matri ces factors Fail Poor Fair Good

Chemicalengineering 16 10 1 0 0 5
Linearprogramming 16 10 0 0 0 6
Simulations 11 7 2 0 1 1
PDEgrids 7 6 1 0 0 0
Miscellaneous 6 0 1 1 0 4
Opt. power flow 2 2 0 0 0 0

Overall 58 35 5 1 1 16



ordering yields generally better results than either p4 or p5. In thirty-four cases the
stability rating of MA28 was either good or fair, whereas the corresponding numbers
are only 17 for p4 and 25 for p5. This is somewhat misleading, since the modification
discussed above allows the MA28 Markowitz code to provide some factorization for
almost all of the test problems. In fact, on comparable problems, the Markowitz
ordering does often fare better, but this is not !rue for the simulation matrices. It is
clearer that the p5ordering is an improvement over the p4ordering in terms of numerical
stability. With the exception of one test matrix, the stability rating of p5 is at least as
good as that of p4. For all of the orderings there are many matrices for which preordering
alone is not satisfactory.

There are clear differences in numerical stability between the problem classes.
The high rates of failure in the PDE problems, in the simulation problems and in the
optimal power flow problems of all three algorithms confirm the observation made in
the last section that these problems apparently are more difficult than the other matrices
in the study. All three algorithms almost always failed for" the PDE problems. The
simulation problems are the only problems where p4 and p5perform better than MA28,
yet all three algorithms have a high rate of failure. The linear programming problems
are not as difficult as the other classes, and yet the p4 and p5 heuristics succeed on,
only six and eight of these problems, respectively. Of these, five are triangular, for
which the decomposition is trivially stable. This result is somewhat surprising, since
the p4 heuristic was designed for LP problems. On none of the classes do the p4and
p5 algorithms provide satisfactory results more than half the time. Hence there appears
to be no particular problem class for which either p4 or p5 orderings are more
appropriate than the Markowitz ordering for numerical stability. It is also clear from
the overall failure rate of all three heuristics that any general use of these orderings
requires modification for stability.

3.2. Costs and effects of stability modifications. The heuristic orderings must be
modified to provide numerical stability in the factorizations. The cost of incorporating
such modifications, and its effects on stability and fill are the topic of this section.

The discussion of the Markowitz ordering in § 1 concluded that, with little
additional cost, the ordering heuristic could have knowledge of the numerical entries
in each current reduced matrix. The MA28 code demonstrates that incorporating some
control on element growth is possible with essentially the data structures already
required for the Markowitzordering.Duff'sdiscussionof the developmentof thecode
[3], [4] does indicate that the development of a practical code was not trivial. However,
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TABLE 3.4
Stability rating of p5 algorithm for the classes of test matrices.

No. of No
Problem class matrices factors Fail Poor Fair Good

Chemical engineering 16 8 0 0 1 7

Linear programming 16 4 1 2 1 8
Simulations 11 5 2 0 3 1

PDE grids 7 6 1 0 0 0
Miscellaneous 6 0 2 0 1 3

Opt. power flow 2 2 0 0 0 0

Overall 58 25 6 2 6 19
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fromthe perspective of the user, the changes needed to compute a stable factorization
withthis code are trivial.

The Harwell MA28 Markowitz code controls the growth of elements in the
factorization, and hence instability, by using a growth or pivoting threshold that can
takevalues between zero and one. A growth tolerance of one corresponds to a pivot
selectionbased essentially on numerical considerations; it is in fact Gaussian elimina-
tion with partial pivoting, with pivots for sparsity preservation chosen only from the
largestelements in rows. The experience of the Harwell designers and others has been
that this is too restrictive to provide practical sparse factorizations, and that a weaker
control still suffices to control instability. We chose, with some assistance from the
standard recommendations for the code, to use a growth threshold of one tenth (0.1).
This results in the rejection of a Markowitz pivot only if there is an element in the
samerow at least ten times larger than the proposed pivot. It also potentially allows
anorder of magnitude growth in some of the elements of the factorization at each step.

Table 3.5 provides the basis for comparing the Markowitz ordering with limited
stabilitycontrol to the preorderings discussed in the previous section. Of the fifty-three
matricesfor which numerical factorizations were computed, in only five did the MA28
codefail to obtain a "good" factorization. It is a surprising fact that the rather substantial
growthallowed at each step does not accumulate. It is also surprising, although it is
consistent with previous published discussion of this algorithm, that the cost of
obtaininga stable factorization is little more than the cost of the Markowitz preordered
factorization. Tables 2.3 and 2.4 illustrate the small (if any) increase in fill associated
withthe restrictions placed on the ordering. There is a corresponding increase in the
number of operations required to factor the matrix, and also in the time for ordering
the matrix. The latter is beyond the scope of this study; some examples are given in
[3], [4].

Modifications to stabilize the ordering provided by the p4heuristic were discussed
in the introduction. Growth and instability are controlled by a very similar threshold
for required pivoting. This frequently used technique requires no modification to the
heuristic itself, but does require increased complexity of the factorization data struc-
tures. In particular, the space requirements for the factorization will not be known
until the factorization is completed. Although this increases the overall complexity of
the process, it is, in fact, still less complex than the Markowitz ordering with control..

As was discussed earlier, limitations on this project led to the omission of a
stabilized p4 factorization from the evaluation code. The only results known to us that
comparethe increased cost in fill for stabilizing the p4 heuristic are contained in [15],

SIMON

1Stmatrices.

Poor Fair Good

0 1 7
2 1 8
0 3 1
0 0 0
0 1 3
0 0 0

2 6 19

TABLE 3.5
Stability rating of MA28 with 0.1 pivoting thresholdfor the classes of test matrices.

No. of No
Problem class matrices factors Fail Poor Fair Good

Chemicalengineering 16 0 0 0 0 16
Linearprogramming 16 0 0 0 0 16
Simulations 11 2 0 0 0 9
PDEgrids 7 3 0 0 0 4
Miscellaneous 6 0 0 0 0 6
Opt.power flow 2 0 0 0 0 2

Overall 58 5 0 0 0 53
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[26], [27]. These results indicated that the amount of increased fill was more sensitive
to the growth threshold than is the case for the Markowitz code. In particular, Saunders
indicated that a threshold of 0.1 was substantially too large, that more growth would
have to be allowed if sufficiently sparse factors were to be obtained. This could well
result in numerically less satisfactory factorizations. There are arguments that explain
why the modification to p4 could result in rapid increases in fill. Since the fill for the
stabilized Markowitz code with threshold of one tenth is often less than the fill for the
unstabilized p4 code there appear to be few reasons to study a stabilized p4 code for
great reduction of fill.

In contrast, the implicit fill statistics for the p5 ordering are very small, except for
the optimal power flow problems. They suggest that a stable version of this ordering
and factorization would be quite valuable for certain problem classes if they have
similar fill statistics. Unfortunately, we do not know how to obtain such a factorization
scheme. We shall discuss why we believe this to be a difficult problem.

Let us note at the outset that it is not hard to find a stable factorization for the
p5 heuristic: the ideas used in conjunction with p4 work also in this context. Note
however that the p5 ordering induces a special structure, a block bordered triangular
form, to any irreducible matrix. Specifically, an irreducible matrix A, of order n, will
be partitioned as follows:

(1) A= [~ ;].
where the (n - p) by (n - p) matrix D is lower block triangular:

(2)

[

Dll

D21

Dnl Dn2 ...

D22

:J
We assume that the number of rows/columns p in the border blocks is small as
compared to n, and that both Band C as well as the offdiagonal blocks in D are sparse.

It is possible to incorporate pivoting within the matrices Djj and the matrix S
without destroying the block partitioning. Such pivoting may be used to improve the
stability of the factorization. It is, however, not enough to guarantee stability. Generally,
stability requires that columns be interchanged between D and B (or that rows be
interchanged between D and C). The ideas used for stabilizing the p4 ordering
interchange columns.

The crux of the matter is that the interchange of columns of D and columns of
B may well destroy the block triangular form of D. If it does, we do not know how
to perform the factorization implicitly. If we must form the factorization explicitly,
the fill will be too great, even without the increases we expect from perturbing the
ordering. The difference between the fill of implicit and explicit factorizations is evident
from Table 2.3. We shall illustrate the problem of instability with a model problem.

Consider the following matrix of order n:
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That this matrix is symmetric is irrelevant to this discussion, as is the fact that it can
be factored stably without pivoting as it is written. The matrix, after it has been
reordered with the p5 heuristic, is given below:

Note that the border has only a single column, so we will denote it as a vector b. The
leadingprincipal block D is unit lower triangular. The implicit fill is exactly the order
of the block S, one, independent of the order, n, of the original matrix.

Gaussian elimination on the reordered matrix requires, either explicitly or
implicitly,the solution of the triangular linear system Dy = b. It is easy to show that
Yl= -4, Y2= -15, Y3= -56 and that the elements of Y thereafter grow by a factor of
about 2+ J3 at each step. This is unacceptable growth, which leads to serious stability
problems. Element growth similar to this was encountered in the factorizations of the
PDE matrices in our test collection.

The model problem explains the nature of the serious stability problems associated
withthe p5 ordering. We have investigated other approaches to avoid element growth
whilepreserving the block bordered triangular form. Approaches based on the Sher-
man-Morrison- Woodbury updating form are possible, but they appear to be equivalent
to the original in terms of growth, that is, to be only implicit reformulations that must
solvea similar linear system at some point. Another attempt to circumvent the element
growthin the formation of the Schur co~plement is to use an orthogonal factorization
of the matrix instead of using block Gaussian elimination. Since the matrix is almost
in lower triangular form, one is tempted to believe that a strategy based on the LQ
factorization might be successful. This is unlikely, for the following reason. The matrix
L in the LQ factorization is the Cholesky factor of the normal equations, i.e. the
Choleskyfactor of

1:1:
Id:

!

[

DDT+BBT DCT+BSI
CDT +SBT CCT +SST J

There is no reason to suspect that the partitioning obtained by p5 is a good reordering
forthis symmetric matrix. Indeed, there are reasons to suspect the opposite: the heuristic
tends to put denser columns into the border, which will cause the leading principal
block in the above to be substantially more full.

It should be mentioned that Heath [16] suggests a reordering scheme for the
solution of particular sparse linear least squares problems by an orthogonal factori-
zation, which is closely related to some ideas expressed here. When full rows are
present, Heath proposes to reorder them last and use block Gaussian elimination to
solve the complete problem. Even though the leading sparse part of the matrix is
factored with stable orthogonal techniques, the use of block Gaussian elimination may
lead to the same stability difficulties encountered with the p5 algorithm.

3.3. Evaluation of measures of stability. Numerical stability is a concern, even
with a factorization that provides some control over element growth. A side issue we
addressed was the reliability of various estimates of the error in the actually computed
factorization.

1 0 -4

-4 1 0 1

1 -4 1 0 0
0

1 -4 1 0

0 0 1 -4 0
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The error in the factorization is defined by E =A - LU. The scalar that best
summarizes this error is the relative error norm, IIEIIIIIAII.Since computing E, or IIEII,
is often unacceptably expensive, several heuristic algorithms have been suggested.
These estimates, which have dramatically different costs, are

(1) Error in the solution IIXtrue- xiiI where Xtrue= (1,1, . . . , 1) T, b = Axtrue, and x
is the computed solution;

(2) Erisman-Reid error bound [13]

~ax leijl~ 3.01em(ID:~xlaijl+ IILlldlUIII)
',J I,}

where e = machine epsilon, and m is the maximum number of operations needed to
compute one entry of L or U;

(3) Wilkinson error bound [28]

m~x leijl~ 3.01em(D:1~xla\J')I).
I,} I,},k

The values obtained for these estimates and made relative to IIAII are summarized in
Tables 3.6-3.8. These tables give the average values of the base 10 logarithms of the
estimates for all of the obtained numerical factorizations. The average ofthe logarithms
of the actual relative error norm are given for comparison, in Table 3.9.

The quantity (3) is a bound on the actual error; the quantity (2) is a bound on
(3). We expect, and find, that the Erisman-Reid bound is larger, more pessimistic
about the success of the factorization, than the Wilkinson bound. This is, in turn, larger
than the actual error. On average, the Wilkinson bound is larger than the actual error

TABLE 3.6

Solution errorfor the classes of test matrices.

TABLE 3.7

Erisman-Reid e"or bound for the classes of test matrices.
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MA28 MA28
Problem class (.0) (.1) p4 pS

Chemical engineenng -10.1 -13.9 -10.7 -10.4

Linear programming -8.0 -13.1 -14.1 -9.5
Simulations +19.3 -11.6 -0.2 +1.1
POE grids +11.6 -19.0 +18.3 +22.2
Miscellaneous -8.9 -13.1 -6.0 -4.5

Opt. power flow +14.8 -11.6 - -

Overall -2.1 -13.5 -7.2 -5.9

MA28 MA28
Problem class (.0) (.1) p4 pS

Chemical engineering -3.4 -10.4 -6.3 -5.6

Linear programming -3.6 -11.2 -11.2 -4.5
Simulations +23.9 -8.9 +7.8 +8.4

POE grids +13.6 -8.9 +22.2 +22.2
Miscellaneous -2.1 -10.4 -0.3 +4.4
Opt. power flow +28.1 -7.8 - -

Overall +3.3 -10.2 -2.3 +0.0
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TABLE 3.8

Wilkinson error bound for the classes of test matrices.

TABLE 3.9

Actual error for the classes of test matrices.

bythree orders of magnitude. This is a large error in an absolute sense, but it is unlikely
tocause a satisfactory factorization to be rejected. On the other hand, the Erisman-Reid
boundis large enough so that some factorizations might be unduly rejected. The results
for this bound on the LP bases as ordered by the pure Markowitz ordering are an
example.However, none of the factorizations with the stabilized Markowitz ordering
would be rejected. The Erisman-Reid bound appears to be a reasonable tool in
conjunctionwith this particular code. (Note that the version of this bound for symmetric
matricesis usually considerably more sharp.)

The error in the solution of a specific equation, (1), is only an estimate, not a
bound on the factorization error. While it is usually a better estimate of the error than
eitherof the bounds, it does have the potential to mislead. The PDE matrices ordered
by the stable Markowitz ordering are a particular case where this estimate indicates
that the factorizations are substantially more accurate than they really are.

The four potential measures or estimates of factorization error differ greatly in
cost.The cost of computing the error in a specific equation is only a matrix multiply
to generate a right-hand side and a matrix solve. The Erisman-Reid error bound
requiresa single scan of the numeric values of A and its factors as well as monitoring
to determine m. Both of these measures can be performed without affecting the
factorization modules and with little additional cost. The Wilkinson error bound
requiresmonitoring of all values in each step of the elimination. Its order of complexity
is the same as the factorization and must be performed simultaneously with the
factorization.The computation of the actual error can be performed at cost similar to
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-6.3 -5.6
[1.2 -4.5
-7.8 +8.4
!2.2 +22.2
0.3 +4.4
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MA28 MA28
Problem class (.0) (.1) P" p5

Chemical engineering -8.7 -12.4 -10.0 -9.9

Linear programming -7.1 -12.7 -11.5 -7.5
Simulations +18.2 -10.6 +0.8 +2.5

PDE grids +13.6 -11.8 +22.2 +22.2
Miscellaneous -7.5 -11.9 -4.8 -3.2

Opt. power flow +16.6 -10.8 - -

Overall -1.2 -12.0 -3.7 -4.6

MA28 MA28
Problem class (.0) (.1) P" p5

Chemical engineering -11.5 -15.3 -12.7 -13.0

Linear programming -10.3 -14.4 -14.6 -10.1
Simulations +17.1 -13.9 -0.8 -0.7

PDE grids +13.3 -13.8 +22.2 +22.2
MiscellaneoJs -9.4 -14.5 -6.7 -5.2

Opt. power flow +13.8 -13.7 - -

Overall -3.5 -14.5 -8.0 -7.2
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the evaluation of the Wilkinson bound, without affecting the factorization. It also
requires more storage.

In practice, only the first two estimates, finding the error in a specific solution or
computing the Erisman-Reid bound, are likely to be low enough in cost. Since the
MA28 code provides a built-in option to compute the product of the norms of Land
U used in the Erisman-Reid bound, this bound is reasonable to use with this code.
(However, in his complex version of MA28 Duff actually monitors the growth, as in
(3); he argues that the overhead of complex arithmetic on some computers makes the
monitoring inconsequential on these computers.) Estimating the error in a specific
solution could be used with other codes, but it should be used with caution. The
particular vector used here is not a good choice in general [19]. More reliability would
be gained by using two or more vectors with random values.

4. Conclusions and recommendations for further study. We set out to determine
whether any of the orderings in this study could be regarded as generally effective.
The results clearly indicate that none of the orderings, considered strictly as preorder-
ings, can be so regarded. However, we confirmed earlier findings that the stabilized
version of the Markowitz heuristic, as represented by the MA28 code, is a generally
useful and effective reordering.

Our study of orderings is incomplete in that it did not include stabilized versions
of the p4 and p5heuristics. As we indicated in the previous section, a stable and implicit
p5 factorization would be quite valuable, if it exists, although its range of applications
would be restricted to certain problem classes. We are not sanguine about the likelihood
of developing such a variant. A stable version of the p4 heuristic is already known.
The published experience with this algorithm is generally negative, but these results
are also confined to a narrow class of problems, linear programming bases.

Our study is incomplete also in that fill and stability are not the only measures
of effectiveness for codes; ordering and factorization times are also important. The P"
heuristic is less complex than the Markowitz heuristic, so ordering times for a good
implementation of p4 should be much less than the ordering time for the Markowitz
ordering. It is often the case that the ordering dominates the computation for MA28
factorizations. A stable p4 ordering and factorization may have smaller total cost, if
more fill, than its Markowitz counterpart when only a single system with a given
structure is to be solved. Whether this is true will depend on how sensitive p4 is to
pivoting for stability, and whether the limited pivoting, "living dangerously," recom.
mended in [26] is, in fact, sufficient to obtain stability. These questions should be
addressed directly by further work on this algorithm.

Recently Michael Saunders [27] has developed a variation on the standard sparse
Gaussian elimination that simplifies the modification of the factors of the sequence of
basis matrices in linear programming problems. Saunders uses two by two stabilized
elementary matrices to compute and update the factors, and obtains potentially quite
different interchanges in computing stable factorizations. Stability is assured for the
initial factorization, given p4 or any other suggested ordering. The results of this study
do not apply directly to his new algorithm, but it remains likely that p4 would not
perform well on structurally symmetric problems.

Our results support the conventional wisdom that there are classes of sparse
matrices, which differ in difficulty. Some of the areas studied resulted in matrices that
were difficult for all of the algorithms, and others resulted in matrices that were easy
for all of the algorithms. Our statistical analyses provide some suggestive results, but
the size and characteristics of our sample are too limited to do more than point the
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wayfor further investigation. A larger sample would have statistical benefits; it would
have a correspondingly large cost in computing. Care should be taken to provide a
wide enough selection to control the effects of certain parameters. For example,
structural symmetry appears to be an indicator of high fill, but it is clearly related in
most of our sample to additional parameters such as regularity and relatively high
density.This study presupposed the value of general purpose sparse matrix heuristics
and codes. The existence of problems such as the relatively unstructured matrices in
ourtest collection, the linear programming bases and the chemical engineering models,
confirmsthis assumption. However, the highly structured and nearly symmetric prob-
lems,which proved the hardest for these general heuristics, point to the need for
furtherstudy of the special cases where variations of symmetric orderings are appropri-
ate.This becomes particularly true when stability can be incorporated into the factori-
zation.This is not the case for most current orderings for nearly symmetric matrices,
whichassume that stability is not an issue. The recent work on extensions of frontal
methodsby Duff and Reid [8], [10]-[12] provides a possible basis for such methods.
Suchmethods are quite different in character from the general sparse orderings, so
carefulanalysis will be required in any comparison. Only with such comparison will
wedetermine if the general sparse heuristics are still valuable for this special class of
problems.

Note added in proof. An additional measure of estimating the error in Gaussian
eliminationwithout pivoting was reported by Chu and George after it could have been
incorporated into this paper. We regret this omission and refer interested readers to
the report [E. Chu and J. A. George, An algorithm to estimate the error in Gaussian
eliminationwithoutpivoting, Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, CS-84-21, 1984].
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